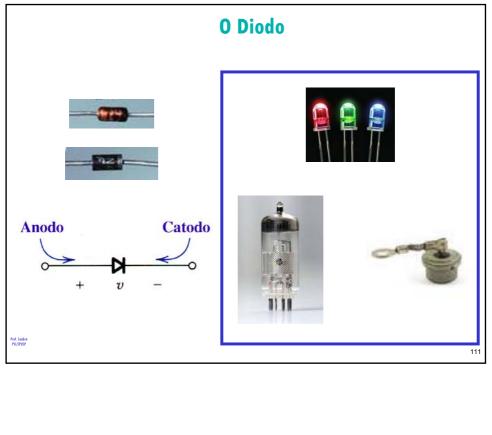
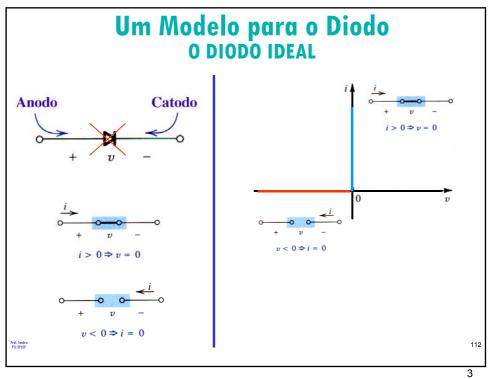


Diodo Ideal Aula 5

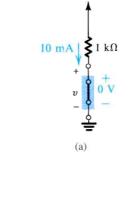
PSI/EPUSP

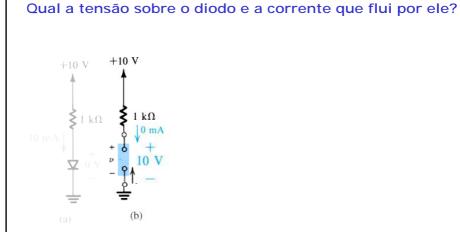

Eletrônica I — PSI3321		
Programação para a Primeira Prova		
Aula	Matéria	Cap./página
1ª	Introdução, Revisão de circuitos com Amp. Op. O 1º Amp Op Comercial.	Listas de Circ. Elét.
16/02	Encapsulamento do Amp Op, O Amp Op ideal,	Cap. 2 - p. 38-46
	Análise de circuitos com Amp Ops ideais. Exemplo 2.2	Apêndice B, p.810-14
2ª	Somador, Configuração não inversora, seguidor, amplificador de diferenças.	Sedra, Cap. 2
19/02	Exercício 2.15	p. 46-53
3ª	Amplificador de instrumentação, Funcionamento dos Amp Ops Não-Ideais.	Sedra, Cap. 2
23/02	Exemplo 2.3 e 2.4	p. 53-59
4ª	Operação dos Amp Ops em grande excursão de sinal, imperfeições cc, circuitos	Sedra, Cap. 2
26/02	integrador e diferenciador. Exemplo 2.6.	p. 59-73
5ª	Diodo ideal, características do diodo real, equação de corrente do diodo,	Sedra, Cap. 3
01/03	exercícios.	p. 89-96
6ª	Análise gráfica (reta de carga), modelos simplificados de diodos, exercícios	Sedra, Cap. 3
04/03	W 11	p. 96-99
7ª 08/03	Modelo para pequenos sinais, modelos de circuitos equivalentes para pequenas	Sedra, Cap. 3 p. 100-103
8 <u>a</u>	variações (próximas do ponto quiescente), exercícios (exemplos 3.6 e 3.7)	Sedra, Cap. 3
11/03	Operação na região de ruptura reversa, diodo zener, Projeto de um regulador Zener, exercícios (exemplo 3.8)	p. 104-106
94	Diagrama de blocos de uma fonte de alimentação c.c., circuito retificador de	Sedra, Cap. 3
15/03	meia onda, circuito retificador de onda completa com enrolamento secundário	p. 106-109
10,00	com tomada central, exercícios: 3.22.	p. 100 103
10ª 18/03	Aula de Exercícios	
Semana Santa (21/03 a 25/03/2016)		
1ª. Semana de provas (28/03 a 01/04/2016)		
Data: xx/xx/2016 (xxxx feira) – Horário: xx:xxh		


5° Aula: Apresentar o Diodo na sua forma Ideal

Ao final desta aula você deve estar apto a:

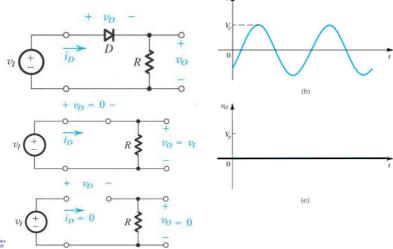
- Reconhecer um diodo e seus terminais e explicar como ele funciona (idealmente)
- Explicar as diferenças entre um diodo real e um diodo ideal
- Determinar o estado de funcionamento de um diodo e calcular valores estimados de tensões e correntes em circuitos com diodos empregando modelos idealizados
- Explicar como funcionam portas lógicas com diodos
- Identificar as três regões de operação de um diodo real
- Usar a lei do diodo para prever seu comportamento na região de operação direta
- Determinar tensões e correntes em circuitos com diodo empregando a lei do diodo
- Explicar o comportamento do diodo real em função da temperatura
- Realizar análises gráficas de comportamento de circuitos com diodos quando submetidos a


Prof. Soubre Variações de parâmetros

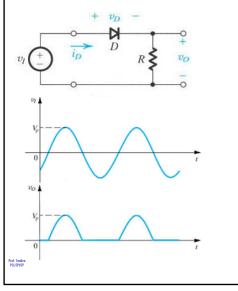

Aplicando o Modelo IDEAL em circuitos com Diodos

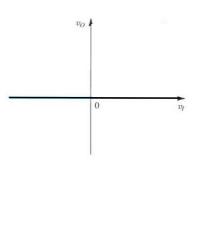
Qual a tensão sobre o diodo e a corrente que flui por ele?

+10 V


Aplicando o Modelo IDEAL em circuitos com Diodos

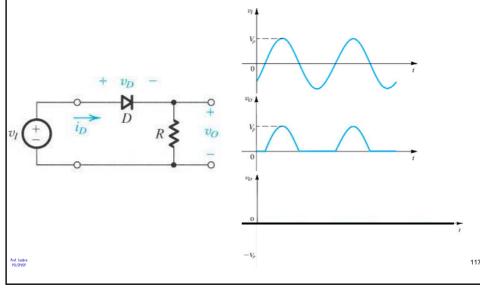
1


Aplicando o Modelo IDEAL para o Diodo


Figura 3.3 (a) Circuito retificador. (b) Forma de onda de entrada. (c) Circuito equivalente para $v_l > 0$. (d) Circuito equivalente para $v_l < 0$. (e) Forma de onda de saída.

Aplicando o Modelo IDEAL para o Diodo Exercício 3.1 Para o circuito da Figura acima abaixo a característica de transferência

de vo versus vi.



116

Aplicando o Modelo IDEAL para o Diodo

Exercício 3.2 Para o circuito na Figura abaixo esboce a forma de onda de vD

Aplicando o Modelo IDEAL para o Diodo

EXEMPLO 3.1

A Figura 3.4(a) mostra um circuito de carga de bateria de 12 V. Se a amplitude de $v_{\rm S}$, senoidal, for de 24 V de pico, determine a fração de tempo de cada ciclo durante o qual o diodo conduz. Determine também o valor de pico da corrente no diodo e a tensão de polarização reversa máxima que aparece sobre o diodo.

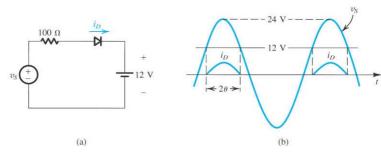
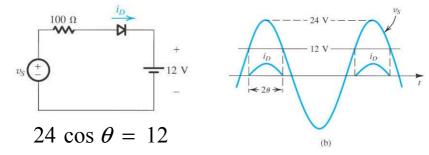
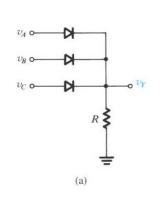
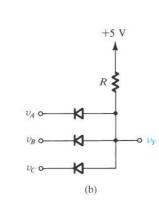



Figura 3.4

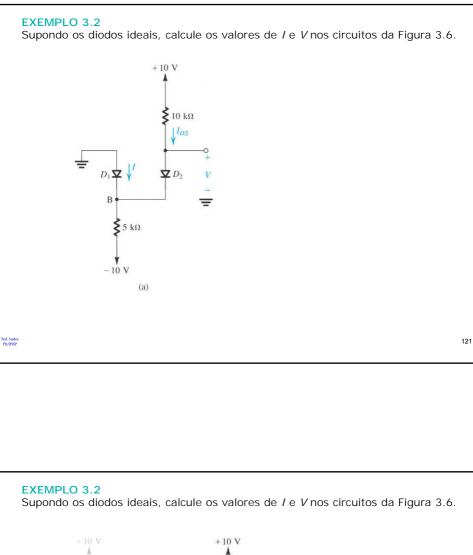
SOLUÇÃO Exemplo 3.1

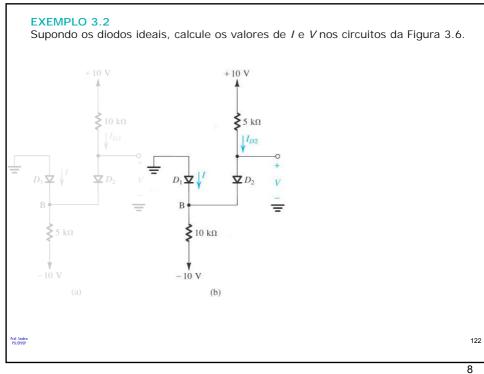
O diodo conduz quando $v_{\mathcal{S}}$ excede o valor de 12 V, conforme mostra a Figura 3.4(b). O ângulo de condução é de 2θ , onde θ é dado por

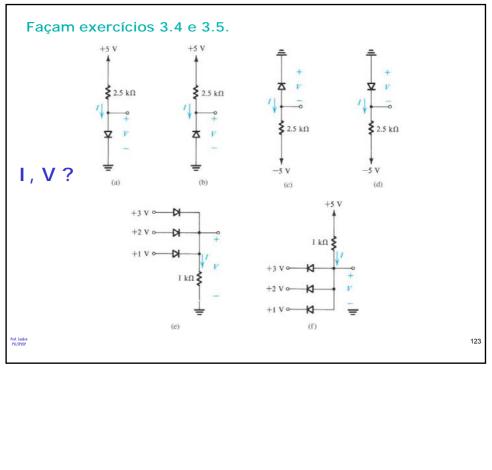

Portanto, $\theta=60^\circ$ e o ângulo de conducão é de 120° ou um terço de um ciclo. O valor de pico da corrente no diodo é dado por

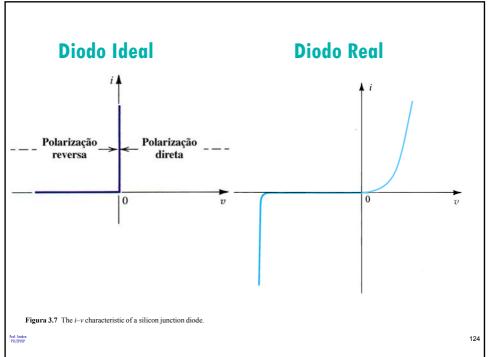

$$I_d = \frac{24 - 12}{100} = 0.12 \,\mathrm{A}$$

A tensão reversa máxima sobre o diodo ocorre quando vS está no seu pico negativo e é igual a 24 + 12 = 36 V.


Portas Lógicas com Diodos


Quais as funções lógicas executadas em a) e em b)?





PSI/EPUSP

